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The aim of this paper is to obtain transformations for the impulse and continuity equa- 
tions of one-dimensional unsteady flows of an ideal gas, whose initial system is invari- 
ant with respect to them. This unables us to introduce a new flow plane X2 fi 2 in 
addition to initial space-time plane ~161 where the compressible fluid obeys a differ- 

ent equation of state which contains an arbitrary particle function (‘) . The connection 

established between the flows in the two space-time planes enables solutions to be found 
in one of the planes by simple calculation from a known solution in the other plane. 

Presence of an arbitrary particle function in one of the planes allows us, in the case 

of adiabatic flows, to find a constant entropy flow, corresponding to isentropic flow 

only at the position of the particle and for the special equation of state. 

1. Trrnsformrtion of equrtfons of motion. Let us consider Euler equa- 
tions 

where p1, 131 and U J_ are pressure, density and velocity of a compressible fluid, 

respectively : xl and 61 are space and time coordinates. 
We easily see that relations 

:1x:, := (1 -j- xpl) drl - xpl’cl dtl, 4t 0 -= 
dtl 

(1.1) 

follow from the continuity equation and the condition that X is maintained in the par- 
ticle, 

If 1 + XP1 # 0 in the given region of plane x1 ??I , functions X2 (~1 tl) and 

& = 81 are independent, because D (x2, tz) I D (x1, tJ = 1 $- xpl # 0. 
Let us put 

p.’ :: p1, F2ZZ pl ) 
1 + XFl 

4 = U] 0.3) 

If we are now changing over to the new independent variables x2 and ta and are 

using (1. 3), we obtain an analogous system 

*> Particle function is a function of a Lagrangian coordinate. 
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Thus the motion of a fluid with parameters p1, P1 and ul in plane 1 (X. $1 )# 

corresponds to the motion of some other, fluid with parameters Pa , pa and 2.4 n within 

plane 2 (X2 $2 1 , and transition from plane 1 to plane 2 is effected by Formulas (1.2) 

and (I. 3) . The reverse transition is given by 

dr, = (1 - XPZ) dx, f- XP~W& (1.5) 

Pr = p2, P* 
p1=-, 

1 - XP? 
ur = IA2 !i.ci) 

It is clear that for one to one correspondence between planes 1 and 2, it is essential 
that the conditions 1 + xpl # 0, 1 - xp2 # 0 hold . Direct and inverse transformation 

formulas show clearly that both planes obey the same rules, but they are not equivalent. 

This follows from the fact that p1 can be arbitrarily large, while Pa < 1/ X. 

2. Particle 8treamline8, It follows from the appropriate continuity equation 

that the particle functions @1(X1, 61 ) and $2(.X 2, $2 ) are connected with the flow 

parameters in both planes by the relations 

These transformations lead one to conclude that if $1 = const and qa = const are 
particle streamlines in the corresponding planes, then $1(x1 $1) = q2 (~$2 fi2) , i. e. 
these transformations map $1 = const in plane 1 into $2 = const in plane 2 . Further- 
more at corresponding points in the two planes the angles between the tangents to the 

particle streamlines and the corresponding coordinate axes are equal, but the curvatures 
of the streamlines differ . 

Observe that the streamline h = const [ $2 = const ] , being a function of the Lagran? 

gian coordinate E1 (at,, tr) [E2 (z,, tz)l only, represents the law of motion of each par- 

ticle and thus each given particle in plane 1 corresponds to one particle in plane 2 . It 
follows, that, if X is the particle function in plane 1, it retains the same significance 

in plane 2. 

9, Intsrdrpendance of tha rolutlona to problema in both planea. 
From a known solution of any given problem in plane 1, (1.2) can be used to determine 

xa as a function of ~1 and $1 

z2 = 
$ 

(1 + XPI) dzr - ~~lur dtl + ml (3.1) 

where X, pl and U1 are known functions of ~1 and 81 and the line integral should 
be taken along any contour L connecting the given points in plane 1 . 

Using relations (1.3) and (3.1) therefore it is easy to find a solution of the correspond- 

ing problem in plane 2 in the parametric form pz = p2 (a,, I~), p2 = p2 (x1, tr), 

u, = u2 (Xl, 1J, 22 = 22 (zr, ll), t, = t1. From here, eliminating XI and tin we can 

write the solution of our problem in terms of za and ti2 . 
Therefore, from the solution of any given problem in one plane, the solution of 

another problem in the other plane can be found by simple calculation. 
From the condition U 1 = U 2 it follows, that the law of motion of a piston in both 

planes is the same, If we assume that PI > 0 , pa > 0 and X z 0 , then &n/ 3x1 > 0. 
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Consequently, the positive and negative directions of corresponding coordinate axes 

coincide, and Xl* fCo when X;?-)*m. 

4, Equrtione of state , We shall assume adiabatic flow in both planes . We 
will take plane 1 , in which an unsteady flow of fluid is completely known as the initial 

one, As the entropy Sl is constant for each particle, we have S1 = Sl( $1) . There- 
fore the equation of state pz = F {PZ / 11 - x b&J p,l, s1 (I&&} in plane 2 will correspond 

to the equation of state p1 = lT( PI, Sl ) in plane 1. In particular, if we have isen- 

tropic flow in plane 1 [pl = ip( p1 )] the presence of an arbitrary particle function X 

in the transformation formulas, limits the consideration of constancy of entropy in plane 

2, to particles only. 

In the case of linear relationship ,Dl = cl’P1 ( ~1 is the velocity of sound which is 

constant) the corresponding closing equation in plane 2 is expressed by Equation 

PZ = c&, / ii - x (%) PA. It should be noted that if dp, i dp, > 0, d'p, / dpla > OF 

then the corresponding relation is valid in plane 2 , It is easy to see that the velocities 
of sound in two cases are connected by c2 = 11 $- x ($J pr] ct. If we know the solution 

of any given isentropic gas flow problem, exhibiting the relation p1 = F( PI ) , we can 

establish a corresponding solution for another nonisentropic gas flow problem which is 
characterized by the relation pz -- F (pz / [1 - x (&) pn]), and for which more com- 
plex methods of solution are used. 

If the connection P1 = Fl( PI) is fixed, the corresponding relation Pa = Fz ( pz, qa ) 
will be completely defined. 

If, instead of (1.3) we take Formulas 

PS = cm i- P, 
APl 

pa = 1 + xp1 

where CI, p and x are arbitrary constants, the form of system (1.4) will not change 
and therefore by choosing CI, p and x we can approximate the given relation 

p2= Fz’(pz, ta) by using function pz = Fz( P~,‘J~~,cL, 8. A). Thus in order to 
approximate the Poisson adiabatic expression Pa ’ = 0 (&) pz” (p2', pz’ are dimension- 

less) in the neighborhood of some value Pao’ we choose in plane 1 a function 
pr’ = a exp (-1 / pt’) (pl', pl’ are dimensionless). Then the relation between p2 ’ 
and Pa ‘in plane 2 is determined by the functions 

pz’ = 0 bih)c~ exp (-I$ / p2’), [3,x WJ = ln 0 WI 

If we equate the values of the function and their first derivatives at point Pao’ we 
arrive at the constants 

a, = ozo’ ‘exp Y P1 = YPao’. 
It shoul$ be observed that the approximation curve chosen in this manner will at any 

point pzo have positive second derivative only for values of y > 2 , 
It is evident that the Poisson adiabatic relation can be approximated not only close 

to the points, but within some interval of values of Pa’. For instance if y = 2.7 and 
Ctl = p1 = 1 within the interval 0.2 s p2’ 
0.008 .Sp2’s 0.14. 

g 0.5 , both curves nearly coincide and 
When y = 2 a good approximation is obtained over the interval 

0.3~p2~0.5. 

6. Flow with rhock waves, If in plane 1 there is a line of discontinuity of 
the first kind of hydrodynamic quantities, a similar pattern of shock waves can be stu- 
died in plane 2 , 
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From the impulse and continuity equations at the shock wave we have [l] 

pi’ (Vi - $‘) (11i’ - /!i”) -= pi’ - Pi”, P1’ (I?, - 7LI’) = fll” (1“ - UI”) (5.1) 

and from the expressions in (1. 5). we obtain the conditions at its image in plane 2 

(Jd’ (V, - u2’) (IQ - uq”) = p2’ - pz”, pi’ (I’, - 112’) = 02” (I’? - Ui”) (5.2) 

One prime denotes the region in front of the shock wave, double prime, the region 

behind it. K and vz are shock wave velocities in planes 1 and 2 connected by equi- 

valent expressions 

I/, = v, + x ($2) P1’ V, - %‘) = lJ,+ x (Wz) PI” (VI - u1”) 
If the shock waves in both planes are propagated through stationary media 

(Ul’ = u2’ = 6, Pi’ = P1O? PI’ = P1O), Expression (5. 3) simplifies to 

k’, = 11 + x (9%) P1Ol v, 

(5.3) 

Formulas (5.2) and (5.3) are correct only in the case when X does not undergo a 

discontinuity at the shock wave. Otherwise only those regions should be compared, 

which lie between the piston and the shock wave and for the outside regions these trans- 

formations are invalid. 

8, Flow of I nonhomogcneour compressible fluid behind a pier- 
ton. Let us suppose that in plane 2 motion of the piston is given by a law 

22 = - at,2 / 2 (u > O), and the compressible fluid obeys the equation of state 

Pz = C2Pz / 11 - X ($2) PJ: h plane 1 the piston will obey the same law lcl = --ati / 2, 

whilst for the gas, PI = C’Pl will be valid. 

If U1 == 0, pr = plo and p1 = p10 on the characteristic X1 = C $1 , the solution to 

the posed problem in plane 1 is fl] 
.- 

U.r z 1; &-: _I_ :taL1 -I_ c:: - (c -+ (If,), pz = $‘Pcxp 3 , , p1 :. C?[lJ 

-.- 
X-E 

l 

J,faq12 -+ &x, G-2 L c 
at, - 1/a2t~2 + 2axl$ c2 - c In _ - 

c S J 

Ilere 8 is an arbitrary function of its own argument ‘1. and is a general solution of 

Equation G?X /d tl = 0 , 
In accordance with Formula (3.1) we have 

zT = z1 -1 pIor E (~1) exp + dzl - E (q) u1 exp : dt, 

3 

(6.1) 

r 

On the line ~1 = c $1 , we have 

If we use one or another form of function E( ‘TJ ) =f( 61) on line ~$1 = c $1 , we can 

determine from (6.1) the first characteristic 6 a = ta(Xa) in plane 2 (in general a 

curved one). 

Because in the undisturbed region of plane 2 we have ,V3 = pa’, and U2 = 0 , we 
have, on characteristic tia = $2(x2) 

p2 = 
P1° 

1 + x Lt.! (%)I P1° 
and this is the initial density distribution as a function of xa . 

We have thus been able to determine the functions 

5.J (51, t1), I:: = t17 ‘12 (21, ?I)? Pz (21, tll. P2 (Xl? fl), 

which are indeed the solutions of the required problem in plane 2 in parametric form. 
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